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We study how the trapping kinetics is modified when traps are gathered in clusters. Recently, we have
proposed a mean-field theory of trapping by clusters of traps valid at the initial stage of the pdoczissm.
Phys.111, 711(1999]. Here by using the optimal-fluctuation method we incorporate fluctuation effects in the
theory and discuss the manifestation of trap clustering in the kinetics over the entire time domain. Notable
observations are that due to trap clusteribgthe trapping kinetics can be significantly modified from the very
beginning of the proces$2) the fluctuation-induced kinetics exhibits more rich behavigy;the fraction of
particles reacting according to a stretched-exponential law can be substantially increased.

PACS numbegps): 05.40—a, 82.20.Fd

[. INTRODUCTION In fact, however, traps are often distributed in space in a
correlated manner. So, the problem arises of how the trap-
The problem of Brownian particle survival in a medium ping kinetics is altered when traps arerrelated This prob-
with randomly located killing traps serves as a model forlem has attracted considerable interest in recent yesars
processes occurring in a number of conte)ts7]. In the  Refs.[1], [6], [7], and references thergin
simplest case ohoncorrelatedtrap medium, in which the The present work is focused on a specific type of trap
traps are distributed in space according to the Poisson laveorrelations, viz., traps are gathered in clusters. Trap cluster-
the decay of the particle species basically follows the Smoluing can play an important role in determining the rates of
chowski theory[8]. According to this theory, the particle trapping by segments of polymer chajrid], ligand-binding
survival probabilityP(t) (here and below, the subscript nc to cell-bound receptorfsl 2], absorption of excitations in ma-
refers to the case of noncorrelated thagscays exponen- terials with irradiation-produced defed#]. The first attempt
tially to incorporate the effect of trap clustering in the theory of
diffusion-limited reactions was made in R¢l.3], where it
Pa(t)=e ckot (1)  was shown in particular that trapping by noncorrelated clus-
ters of traps proceeds slower than that by noncorrelated traps,
(after some transient period which is of minor importance forno matter what the cluster structure[ist, 15, i.e.,
the overall ratg wherekp=47bD is the rate constanD is
the particle diffusion coefficien is the radius of trap, and P(t)>P,Jt). (3)
is the trap concentration. The Smoluchowski approach is

based on the mean-field approximation by neglecting thg order to understand how the slowdown due to trap cluster
many-body effects due to competition between traps. Thisormation is manifested, a mean-field theory has been re-
competition leads to slow d_own qf the trappin_g ki_netics COM-cently developed by the present authidr§]. This theory is a
pared to the Smoluchowski solution, Hd), which in factis  generalization of the Smoluchowski theory to the case of
a lower bound forP,(t) [9]. The slowdown is a very weak cjystered traps. As for noncorrelated traps, the mean-field
effect up to the final stage of the process. At long times theo|ution is of limited utility. In particular, it fails at the final
mean-field approach breaks down since the kinetics is domktage of the process, where the most if not all of surviving
nated essentially by the many-body effects. The asymptotigarticles is localized in trap-free regions of the fluctuation
(t—o0) decay exhibits a stretched-exponential behaM®  nature.
/3 e 35 Our aim in this paper is to take into account the fluctua-
Pndt)~exd —A(c™"Dt)>™], (2 tion effects and to show what is introduced by trap cluster
formation in the trapping kinetics over the entire time inter-
whereA=(3)(27*)?5. The physical reason for this behavior val. As a result, we present here a picture of trapping by
of the survival tail, referred to as fluctuation slowdown of theclusters of traps, which is, roughly speaking, of the same
trapping kinetics, is the particle untypical survival in untypi- level of accuracy as that described above for traps distributed
cally large trap-free regions. For noncorrelated traps, théotally at random. By examination of the whole range of the
fraction of particles surviving up to times, where the problem parameters, we find that trap clustering can dramati-
stretched-exponential law, ER), holds, is so small that, as cally change the results known in the case of noncorrelated
far as we are aware, there is no experimental or computdrap medium. In particular, we show that due to trap cluster-
simulation evidence of observation of the fluctuation slow-ing the fluctuation-induced kinetics exhibits more rich be-
down in three dimensional systems. havior as compared to the case of noncorrelated traps. An-
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other important observation is that spatial correlationsever, the mean-field arguments are invalid at the final stage
between traps can lead to a substantial increase of the fraof the process. In this section we briefly review the mean-
tion of particles annihilating via the fluctuation-induced ki- field results and extend the theory by consideration of par-
netics. ticle survival in large trap-free regions, which determines the
kinetics at long times. We show that for clustered traps the
fluctuation-induced kinetics is much different from that for
noncorrelated traps. This is a consequence of the fact that
Consider a point Brownian particle moving among ran-trap clustering causes a considerable modification of the size
domly distributed static spherical traps of radusThe traps  distribution of trap-free voids.
are supposed to be perfegthe particle is instantaneously
absorbed upon hitting a tra@and their volume fractionp
=(4/3)mwch® is assumed to be smaky<1 (otherwise the
kinetics is very fast and difficult for observatiorA special With the mean-field approximation, the survival probabil-
feature of the model under considerat[d3] is that the traps ity can be written as
are gathered in spherical clusters of radRisb. Trap clus- .
ters are assumed to be spatially noncorrelated. Each cluster P(t)zexp{ _CJ k(t’)dt’} ()
containsn traps. Therefore, the cluster concentratmyis 0
related to the total trap concentratiarby the equatiorc
=c/n. We also assume that intracluster correlations are abA
sent, i.e., traps are uniformly distributed within the cluster
being independent of each other.
The quantity of interest is the survival probabiliB(t),
defined as the probability for the particle to be untrapped up
to timet. When considering noncorrelated traps, the volume tanhy/a
fraction of trapsg is the only dimensionless parameter of the Ke.= kD; 1- Ja |
problem. In the model of clustered traps, there appear two @
additional parametef®/b andn. To understand the influence
of trap correlations on the trapping kinetics, one has to anaFor transparent cluster®verlapping or not k.,~kp and
lyze the behavior ofP(t) everywhere over the plane hencek(t) is almost the same as the Smoluchowski rate
(R/b,n). constanikp . So in this case, the trapping kinetics is close to
If the volume fraction of clustersd=(4/3)mcyR®  that for noncorrelated trap®(t)~P,(t), and trap cluster-
= ¢(R/b)3/n is small, the overwhelming majority of clusters ing does not actually manifest itself in the kinetics. The
are nonoverlapping, and converselydifis large, the strong slowdown predicted by inequality in E¢R) is a very weak
overlap between clusters occurs. A conditional border beeffect.

Il. THE MODEL

A. Mean-field solution

ccording to estimate$16,20, the rate coefficientk(t)
'monotonically decreases with time frdog0) = kp, to the pla-
teau valuek,, given by

®

tween these two regimes is the lide= 1. Qualitatively, we For absorbing clusterg,, is less tharkp by a factor 3.
call the clusters nonoverlappingverlapping, if ®<1(®  However, if such clusters are well overlapping, the majority
>1). of particles annihilate at times which are small compared to

To classify the clusters, it is reasonable to introduce anthe characteristic time of variation d&f(t). Their trapping
other instructive parameter= 7, /7;=3nb/R, which is the  proceeds in accordance with the Smoluchowski dependence
ratio of two characteristic times related to particle passagéor noncorrelated trapB,(t), Eqg.(1). Significant deviations
through a cluster: the diffusion time,=R?/D and the life  from the Smoluchowski kinetics occur at long times only,
time 7,=R33nbD [the latter is estimated from the Smolu- where an application of the mean-field approximation is
chowski solution, Eq(1), wherec is replaced by the intrac- doubtful. Thus, in this case, as in the case of transparent
luster concentration of traps,=3n/4wR3]. The parameter clusters,P(t)~P,(t).

a measures the degree to which an individual cluster is ab- A different picture takes place when we deal with non-
sorbing. If it is small, a particle passes through a clustenverlapping absorbing clusters. Hekét) varies very fast,
almost safely. Ifa is large a particle entering a cluster is and the transient period fd(t) is of minor importance in
most likely eliminated. It is natural to call the clusters with the kinetics. Therefore, the rate coefficient in fact is equal to
a<1 transparent and those with™>1 absorbing. The line k,~3kp/a=4wDR/n and the decay of the survival prob-
a=1 is a conditional border between transparent and abability is given by

sorbing clusters. We would like to stress that a cluster may
be absorbing even if much of the cluster volume is free from
traps[17]. This is a manifestation of the peculiar volume-
filling property of a diffusing particl¢ 18] due to the fractal
nature of the Brownian motiofi9]. i.e., the trapping kinetics is described by the Smoluchowski
dependence, Eq1), where the trap concentration and size
are replaced by those for clusters. This is a consequence of
the fact that the clusters by themselves play a role of perfect

A theory developed in Refl16] suggests a mean-field traps. Only in this case the slowdown due to trap clustering
solution for P(t) valid for the entire range of problem pa- [see Eq(3)] is significantly manifested from the very begin-
rametersR/b andn at the initial stage of the process. How- ning of the process.

P(t)~exp(—4mcyDRY), (6)

Ill. KINETIC REGIMES
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B. Survival in trap-free voids Eqg.(9) (for R<R). Noteworthy is that for clustered traps the

At the final stage of the process, the mean-field approacBMptiness probability of any given region is greater than in
breaks. Here the problem can be treated by recognizing th&e case of noncorrelated trais7,22, i.e., due to trap clus-
at long times most if not all of surviving particles is localized tering trap-free regions are more pronounced. The inequality
in trap-free voids. To find an estimate characterizing thén Ed. (3) is a consequence of this fact.
fluctuation-induced behavior d#(t) [more precisely a rea-  Then, proceeding in the same manner as in the noncorre-
sonable lower bound fdP(t)] we shall use a method similar 1ated case, we substitute E¢8) and(10) into the right side

to the optimal-fluctuation methof®1], which underlies the Of Eq.(7) and maximize the resulting product with respect to
derivation of the asymptotic behavior &,(t), Eq. (2), in  the radiusR. As a result, we obtain the estimates for the

Ref. [10]. radius of optimal voidR(t), and the survival probability of
Let us introduce a spheké;, of radiusR>b, surrounding the particles localized in trap-free regions. As one might ex-
the starting point of a particle. Then one can write down the?€ct, these estimates have different forms according to which

evident inequality kind of voids(inside or outside clusters, small or lajgeays
the dominant role. At very long, timds—co, the main con-
P(t)=Px(t)g(Vg). (7)  tribution is given by large voidsR(t)>R. Here one obtains
that
Here
3/5
Px(t)=exp — w2Dt/R?) (8) P(t)~exp[—2.5cb(;) }
is the probability of a particle to stay insidé, during the s
. 2 . .
time t>R°/D under the condition that the sphere contains =exy —A(cZ*Dt)%9], R(t)=R<—) . (13
no traps;g(Vy) is the probability to find the volum¥y, free 7

from traps. For noncorrelated traps the emptiness probability _ 2 5 - L
g(Vy) is given by the Poisson law where 7= (3/27°)® 7= R® is a characteristic time charac-

terizing the particle survival in trap-free voids outside the
clusters. Equatiorf13) provides a reasonable lower bound
)- (9 for P(t) at timest> 7. Moreover, it presents the asymptotic
(t—o°) behavior of the exact solution, as it was proved in
Then, by substituting Eqg8) and (9) into the right side of ~Ref.[22]. This regime stems from large scale properties of
Eq. (7) and maximizing the resulting product with respect tothe model(clusters act as noncorrelated absorbing traps re-
the unspecified radiu®, one arrives at Eq(2) describing gardless of details of their structurd his is why the survival
the final stage of trapping by noncorrelated trépg|. probability, Eq.(13), is similar to that known for noncorre-
In the considered case of clustered traps, trap-free voidkted traps, Eq(2). The only difference is that the kinetics is
occur both outside and inside the clusters. It is convenient téontrolled by the cluster concentratiog rather than the trap

4
IndVR)= eXF( 3 7R3

present the emptiness probabildgyVz) as a sum concentrationc. In agreement with Eq(3), this decay is
substantially slower thaR,(t) given by Eq.(2).
9(Vr) =doul Vr) + 9Gin(Vr), (10 At timest< 7, the main contribution td(t) is given by

the particles surviving in smalcompared to the correlation
lengthR) voids, R(t) <R, which occur both outside and in-
side the clusters. In the former case, the particle survival is
described by

where gouin(Vx) is the probability to find the voidv/z
outside (inside the clusters. Taking into account that the
sphereVy is free from traps if its center and that of the
nearest cluster are separated by a distaReceR) or greater,

one can estimatgy{(Vz) by t\ 13 t\ 13
4 P(t)~exp{—<b l+4.5(;> }, R(t):R(;) ,
Joul V) = eXF{ — 3 mCa(R+ 72)3}- 11 (14

This equation shows two important features of the model'-®" the decay proceeds much slower than at long tites

The distribution of large R>R) voids is described by Eq. |>>T [see IIEqs(13) and(ﬁ4)]. In the Ie;tt;r ca;éand forbovléar—
(9) in which c is replaced byc,. This means that on large apping clusters only the estimate foP(t) is given by Eq.

i — 1/5
scales the ensemble of clustered traps can be viewed as(%? at t'mes' whereR(t)—(wI_DtIZC) _<R._Note _that for
Poisson ensemble of noncorrelated traps, whose concentrveriapping clusters the particle survival in the |n2t/r3acluster

tion is cy. A completely different distribution occurs for traq_—r:‘ree rhegi(;)ns pla¥/shthe dqnlﬂnant _rolel Whg:ﬂglr ;
small (R<R) voids: us, the decay of the particle survival probability in trap-

free voids involves two o«for overlapping clustejsthree
Joul Vi) =exd — ®(1+3R/R)]. (12)  stages. At timed>r, the decay is governed by the time
dependence in Eq13). At shorter times<< 7 (for overlap-
Evidently, for nonoverlapping clusters the probability to find ping clustersr/n?3<t< 1), the decay proceeds in accor-
a void V5 inside the clusters is smaly)i,(Vz) <9oud Vr), dance with Eq.(14). At times t</n?® (for overlapping
and can be neglected. For overlapping clusters, the intraclusiusters only, there exists a regime, where the effects due to
ter concentratior;, has to be replaced by the total trap con-trap clustering are of minor importance and the decay form is
centrationc=c;,® and the estimate fay;,(V%) is given by  the same as that for noncorrelated traps, &Y.
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these domains in order. For transparemt(1) nonoverlap-
ping (®<1) and weakly overlappingd® <1) clustergdo-
main 1 in Fig. 3, R/b<(3¢) 2, 1<n<(})R/b, and ab-
sorbing nonoverlappinga(>1, ®<1) clusters(domain 32,
n>max (3)R/b,#(R/b)%], a general behavior d?(t) is remi-
niscent of that for noncorrelated traps. At timest*, the
survival probability decays exponentially
P(t)=exp(—ck.t), (16)

while after t* its time behavior is governed by the
asymptotic dependence in E{.3), associated with the par-

FIG. 1. Schematic representation of the domains in the plane Oﬁcle survival in large, compared to the correlation length

the problem parameter&(b,n), corresponding to different kinetic

scenarios. Domain 1 represents nonoverlapping and weakly ove
lapping transparent clusters. Domain 2 represents nonoverlappi
absorbing clusters. Domains 3 and 4 represent moderately a

strongly overlapping clusters, respectively.

IV. DISCUSSION

trap-free voids. The crossover tim&=n"1(k., /kp) ~>4¥,
found via equating the survival probabilities given by Egs.
3) and(16). In the case of transparent clustéd®main 1,

k.~kp and Eq.(16) is reduced to Eq(1). Therefore, the

slowdown due to trap clusterifigee Eq.3)] is manifested

only at the final stage of the procesee Eqs(2) and (13)]

due to the existence of the large trap-free regions. The frac-

~ We are now in a position to discuss different manifesta+jon of particles annihilating in the fluctuation regime is
tions of trap clustering in the kinetics over the entire timegijyen by

domain. To understand better what is introduced by trap

clustering in the trapping kinetics, it is reasonable to start by

e=P(t")=exg—Ain "' = (e (17)

recalling the kinetic scenario for noncorrelated traps. This
scenario is based on the two lower bounds for the survivaNote thate>¢,. and the differenceg— ¢, increases with

probability given by Egs.(1) and (2). At times t>t}.

=A;¢ YH47bcD) !, where (4rbcD) ! is the Smolu-
chowski life time[see Eq(1)] andA,=5%%7%/54, the lower
bound, Eq. (2), resulting from the optimal-fluctuation
method, offers a better estimate B (t) than the Smolu-

n. However, becauseis bound by¢~*2in this domain, the
quantity e remains negligibly small.

A distinctive feature of the kinetics of trapping by non-
overlapping absorbing clustefslomain 2 is that the trap
clustering manifests itself from the very beginning of the

chowski result, Eq(1). Thust*. can be considered as a con- Process. Indeed, in this domakn~3kp /a<kp . Therefore
ditional border between the mean-field and the fluctuatiod=d- (16) is reduced to Eq(6). This implies that the clusters

regimes: at timeg<ty, the kinetics is single-exponential
while at timest>t*. it exhibits a stretched-exponential be-
havior. The fraction of particles,.=P,(t}) annihilating
according to the stretched exponential law, B}, is a neg-
ligibly small quantity

Enc™ qu_A1¢7l/2) (15

and trapping of the overwhelming majority of particles is

well described by the Smoluchowski dependence, (Eqg.

by themselves play a role of perfect traps and the problem is
reduced to that of noncorrelated traps whose concentration
and size are those of the clusters. Thus in domain 2, the
fraction of particlese =P(t*) reacting in the fluctuation-
induced regime, Eq13), is given by Eq.(15) in which one

has to replace the volume fraction of trapdy the volume
fraction of clustersb

nb3R3

e=exp(—A P )= (g, (18)

When considering the model of clustered traps, we alsdn the trivial case of trap-filed clusterb®/R3>1, the
have at hand the mean-field and the fluctuation estimates ofuantity ¢ is smaller thare,.. If, however,nb®/R3><1 and

the survival probabilitysee Sec. I). The corresponding ki-

hencep<®d, thene>¢,.. The more the cluster volume free

netic scenario is arrived at by comparison these lowepf traps, the more this difference. The estimate B®) is
bounds forP(t). A new factor is that the estimates obtained obtained under the conditich<1, so in domain 2 the quan-
in Sec. lll are determined by the two additional dimension-tity ¢ is bound by its value near the bordér=1, wheree

less parameter®/b andn appearing in the problem. There-

=exp(—A,). Attention is drawn to the fact that for absorbing

fore, such a comparison should be carried out everywherelusterse declines withn, which is quite in contrast to what

over the plane R/b,n). As a result we arrive at the more

one has for transparent clusters. Thus the dependefrge

rich picture than that known for noncorrelated traps. Note-exhibits a nonmonotonic behavior. The maximum is located
worthy also is at times when the fluctuation slowdown doeshear the region of transition from transparent to absorbing
occur, the neglect of the survival of particles which have leftclusters, whera~R/b.

a void is justified, sinceR(t) is large compared with the

characteristic length over which a particle is trapped outsidenax(1,1k)<®d< ¢~ 2,

a void.

Domain 3 corresponds to moderately overlapping,
clusters, R/b>(3¢) 2
max (27¢) Y2 ¢(R/b)3]>n> »¥4R/b)3. In this case the

Schematic representation of domains in the planeinetic scenario involves three stages. The first one is well
(R/b,n), corresponding to different kinetic scenarios, isdescribed by the Smoluchowski solution, Edj), which is
shown in Fig. 1. Let us consider the trapping kinetics forjustified here up to timer;=7p5/a. At the time intervalr,
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<t<r, the decay is governed by the time dependence giveis unlikely that the bulk of particles is trapped following the
by Eq. (14). This intermediate asymptotic behavior is asso-fluctuation decay laws. The point is that the fluctuation slow-
ciated with roaming of particles within smalkompared to down is originated from the particle untypical survival in
the cluster sizeR) trap-free cavities between the clusters. At untypically large trap-free regiorisee Eq.(7)]. In the case
last, at timeg > 7 the survival probability takes its universal of clustered traps, the probability to find trap-free vdite
asymptotic form, Eq(13). Thus in domain 3 the whole dis- emptiness probabilityg(V)] can be much greater than
tribution of voids outside the clusters, and not just that ofwhen traps are noncorrelated, however, the probability
large voids, is of importance in explaining the fluctuation- P(t), Eq. (8), of a Brownian particle staying insid¥y
induced kinetics. Note that in this case the total fraction ofduring the timet>7R2(t)/D remains small.

particles reacting in the two fluctuation regim@sainly in
the first ong is V. CONCLUSIONS

c=e @ (19 This paper treats the trapping kinetics in the case when
traps are gathered in spherical clusters which are uniformly
This fraction falls off as the volume fraction of clusters in- distributed in space. By consideration of the whole range of
creases. the cluster parameters, we have discussed both the mean-
Domain 4 represents strongly overlapping>¢ Y2 field and the fluctuation-induced regimes determining the ini-
clusters, R/b>(3¢) "2, n<¢¥4R/b)3. One can expect tial and the final stage of the process, respectively. Thus, we
that strong overlapping of clusters effectively cancels theextend the theory of diffusion-limited reactions to the case of
trap correlations. Our estimates of the trapping kinetics irclustered traps over the entire time interval.
domain 4 support these expectations. Here the kinetic sce- The following important observations related to the mani-
nario involves four stages. At the first two stages, the decafestation of trap clustering in the trapping kinetics may be
basically does not differ from the kinetics inherent in thededuced from our analysig§) The effect of trap correlations
case of noncorrelated traps: whenty,, it follows mean- is strong from the very beginning of the process only for
field predictions, Eq(1), while whenr/n23>t>t*_the sur- nonoverlapping absorbing clustefdomain 2 in Fig. 1 In
vival probability decays according to the stretched-all other cases, the slowdown due to trap cluster formation
exponential law, Eq(2), associated here with the particle [Se€ EG(3)] becomes significant only at asymptotically long
survival in intracluster trap-free voids. Thus, the correlationdimes. (i) Due to trap clustering, the fluctuation-induced ki-
effects do not disturb the trapping kinetics over a long periodtics exhibits more rich behavior as compared to the case of
of time even when survival strategy in trap-free regions benoncorrelated traps. In particular, there exists the intermedi-
comes advantageous. This is quite in contrast to what wét® asymptotic dependence, Ef#), which decays consid-
have seen in all cases discussed above. Only at very lorgfaPly slower than the long-time decay law, Eg3), pre-
times t>7/n23 the trap correlations manifest themselves:diCts. (iii) Due to trap clustering, the fraction of particles
first P(t) decays in accordance with E¢L4) and finally, ~€acting according to nonexponential kinetics can be signifi-
when t>17, the universal asymptotic behavior, E(L3), cantly increased. Moreover, there exists a region of cluster
takes place. Wher>— = the four stage kinetic scenario is Parameters, where the effect takes its maximal value. This
reduced to the two stage kinetic scenario for noncorrelateff9i0N. presumably near the border between overlapping and
traps. Evidently, in this domaia = (the contribution of ~nonoverlapping absorbing clustefthe curve®=1 in the
the third and the fourth stages is negligibly small Fig. 1), is best suited to exhibit the fluctuation effects in the
Our last remark concerns the effect of trap clustering orff@PPing kinetics(iv) Strong overlapping of clusters effec-
the fraction of particless annihilating via the fluctuation- UVely cancels the trap correlation effects in the kinetics.

induced decay forms. As is seen from the estimates above, AS @ final remark, we conjecture that qualitatively similar
the quantitye can be significantly increased when we dealesults should be obtained when considering more general

with clustered traps. The estimate fein domain 3 given models of clustered trapsuch as, for example, clusters of

by Eq. (19) appears to be promising. It predicts valuessof nonspherical ;ha;),ewhere analytical treatments seems to be
much greater tham ., Eq. (15), if the volume fraction of much_ more dlff!cult._ _Ther_efore, though the model dlscqssed
clusters® is not too large. As is seen from E(L9), the here is h|g_hly simplified, it can pe tgken as a useful gmde_ in
function &(®) monotonically decreases witth when & the analysis of the trap clustering influence on the trapping

>1. On the other hand, the estimate oobtained in domain  KIN€tics in more realistic cases.
2, Eqg. (18), shows a monotonic increase with, when ®
< 1. This suggests that the dependea¢®) exhibits a non-
monotonic behavior with a maximum located near the border This work was supported in part by Academia Sinica and
line ®=1 between overlapping and nonoverlapping absorbNSC of Taiwan(Contract No. NSC 89-2811-M-001-0038
ing clusters(domains 2 and 3 One can expect that trap Yu.A.M. thanks the Russian Foundation for Basic Research
clusters, parameters of which are in this optimal region, aréor support(Grant Nos. 97-03-33683a and 99-01-00298a
best suited to exhibit the fluctuation effects in the trappingand gratefully acknowledges the kind hospitality received
kinetics. Nevertheless, even under such optimal conditions from the Institute of Atomic and Molecular Sciences.
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