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Trapping by clusters of traps
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We study how the trapping kinetics is modified when traps are gathered in clusters. Recently, we have
proposed a mean-field theory of trapping by clusters of traps valid at the initial stage of the process@J. Chem.
Phys.111, 711~1999!#. Here by using the optimal-fluctuation method we incorporate fluctuation effects in the
theory and discuss the manifestation of trap clustering in the kinetics over the entire time domain. Notable
observations are that due to trap clustering~1! the trapping kinetics can be significantly modified from the very
beginning of the process;~2! the fluctuation-induced kinetics exhibits more rich behavior;~3! the fraction of
particles reacting according to a stretched-exponential law can be substantially increased.

PACS number~s!: 05.40.2a, 82.20.Fd
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I. INTRODUCTION

The problem of Brownian particle survival in a mediu
with randomly located killing traps serves as a model
processes occurring in a number of contexts@1–7#. In the
simplest case ofnoncorrelatedtrap medium, in which the
traps are distributed in space according to the Poisson
the decay of the particle species basically follows the Smo
chowski theory@8#. According to this theory, the particl
survival probabilityPnc(t) ~here and below, the subscript n
refers to the case of noncorrelated traps! decays exponen
tially

Pnc~ t !5e2ckDt ~1!

~after some transient period which is of minor importance
the overall rate!, wherekD54pbD is the rate constant,D is
the particle diffusion coefficient,b is the radius of trap, andc
is the trap concentration. The Smoluchowski approach
based on the mean-field approximation by neglecting
many-body effects due to competition between traps. T
competition leads to slow down of the trapping kinetics co
pared to the Smoluchowski solution, Eq.~1!, which in fact is
a lower bound forPnc(t) @9#. The slowdown is a very weak
effect up to the final stage of the process. At long times
mean-field approach breaks down since the kinetics is do
nated essentially by the many-body effects. The asympt
(t→`) decay exhibits a stretched-exponential behavior@10#

Pnc~ t !;exp@2A~c2/3Dt !3/5#, ~2!

whereA5( 5
3 )(2p4)2/5. The physical reason for this behavio

of the survival tail, referred to as fluctuation slowdown of t
trapping kinetics, is the particle untypical survival in untyp
cally large trap-free regions. For noncorrelated traps,
fraction of particles surviving up to times, where th
stretched-exponential law, Eq.~2!, holds, is so small that, a
far as we are aware, there is no experimental or comp
simulation evidence of observation of the fluctuation slo
down in three dimensional systems.
PRE 611063-651X/2000/61~6!/6302~6!/$15.00
r

w,
-

r

is
e
is
-

e
i-
ic

e

er
-

In fact, however, traps are often distributed in space i
correlated manner. So, the problem arises of how the t
ping kinetics is altered when traps arecorrelated. This prob-
lem has attracted considerable interest in recent years~see
Refs.@1#, @6#, @7#, and references therein!.

The present work is focused on a specific type of tr
correlations, viz., traps are gathered in clusters. Trap clus
ing can play an important role in determining the rates
trapping by segments of polymer chains@11#, ligand-binding
to cell-bound receptors@12#, absorption of excitations in ma
terials with irradiation-produced defects@4#. The first attempt
to incorporate the effect of trap clustering in the theory
diffusion-limited reactions was made in Ref.@13#, where it
was shown in particular that trapping by noncorrelated cl
ters of traps proceeds slower than that by noncorrelated tr
no matter what the cluster structure is@14,15#, i.e.,

P~ t !.Pnc~ t !. ~3!

In order to understand how the slowdown due to trap clus
formation is manifested, a mean-field theory has been
cently developed by the present authors@16#. This theory is a
generalization of the Smoluchowski theory to the case
clustered traps. As for noncorrelated traps, the mean-fi
solution is of limited utility. In particular, it fails at the fina
stage of the process, where the most if not all of surviv
particles is localized in trap-free regions of the fluctuati
nature.

Our aim in this paper is to take into account the fluctu
tion effects and to show what is introduced by trap clus
formation in the trapping kinetics over the entire time inte
val. As a result, we present here a picture of trapping
clusters of traps, which is, roughly speaking, of the sa
level of accuracy as that described above for traps distribu
totally at random. By examination of the whole range of t
problem parameters, we find that trap clustering can dram
cally change the results known in the case of noncorrela
trap medium. In particular, we show that due to trap clust
ing the fluctuation-induced kinetics exhibits more rich b
havior as compared to the case of noncorrelated traps.
6302 ©2000 The American Physical Society
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PRE 61 6303TRAPPING BY CLUSTERS OF TRAPS
other important observation is that spatial correlatio
between traps can lead to a substantial increase of the
tion of particles annihilating via the fluctuation-induced k
netics.

II. THE MODEL

Consider a point Brownian particle moving among ra
domly distributed static spherical traps of radiusb. The traps
are supposed to be perfect~the particle is instantaneousl
absorbed upon hitting a trap! and their volume fractionf
5(4/3)pcb3 is assumed to be small,f!1 ~otherwise the
kinetics is very fast and difficult for observation!. A special
feature of the model under consideration@13# is that the traps
are gathered in spherical clusters of radiusR@b. Trap clus-
ters are assumed to be spatially noncorrelated. Each clu
containsn traps. Therefore, the cluster concentrationccl is
related to the total trap concentrationc by the equationccl
5c/n. We also assume that intracluster correlations are
sent, i.e., traps are uniformly distributed within the clust
being independent of each other.

The quantity of interest is the survival probabilityP(t),
defined as the probability for the particle to be untrapped
to time t. When considering noncorrelated traps, the volu
fraction of trapsf is the only dimensionless parameter of t
problem. In the model of clustered traps, there appear
additional parametersR/b andn. To understand the influenc
of trap correlations on the trapping kinetics, one has to a
lyze the behavior ofP(t) everywhere over the plan
(R/b,n).

If the volume fraction of clustersF5(4/3)pcclR
3

5f(R/b)3/n is small, the overwhelming majority of cluster
are nonoverlapping, and conversely ifF is large, the strong
overlap between clusters occurs. A conditional border
tween these two regimes is the lineF51. Qualitatively, we
call the clusters nonoverlapping~overlapping!, if F,1(F
.1).

To classify the clusters, it is reasonable to introduce
other instructive parametera5tD /t153nb/R, which is the
ratio of two characteristic times related to particle pass
through a cluster: the diffusion timetD5R2/D and the life
time t15R3/3nbD @the latter is estimated from the Smolu
chowski solution, Eq.~1!, wherec is replaced by the intrac
luster concentration of trapscin53n/4pR3#. The parameter
a measures the degree to which an individual cluster is
sorbing. If it is small, a particle passes through a clus
almost safely. Ifa is large a particle entering a cluster
most likely eliminated. It is natural to call the clusters wi
a,1 transparent and those witha.1 absorbing. The line
a51 is a conditional border between transparent and
sorbing clusters. We would like to stress that a cluster m
be absorbing even if much of the cluster volume is free fr
traps @17#. This is a manifestation of the peculiar volum
filling property of a diffusing particle@18# due to the fractal
nature of the Brownian motion@19#.

III. KINETIC REGIMES

A theory developed in Ref.@16# suggests a mean-fiel
solution for P(t) valid for the entire range of problem pa
rametersR/b andn at the initial stage of the process. How
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ever, the mean-field arguments are invalid at the final st
of the process. In this section we briefly review the mea
field results and extend the theory by consideration of p
ticle survival in large trap-free regions, which determines
kinetics at long times. We show that for clustered traps
fluctuation-induced kinetics is much different from that f
noncorrelated traps. This is a consequence of the fact
trap clustering causes a considerable modification of the
distribution of trap-free voids.

A. Mean-field solution

With the mean-field approximation, the survival probab
ity can be written as

P~ t !5expF2cE
0

t

k~ t8!dt8G . ~4!

According to estimates@16,20#, the rate coefficientk(t)
monotonically decreases with time fromk(0)5kD to the pla-
teau valuek` given by

k`5kD

3

a S 12
tanhAa

Aa
D . ~5!

For transparent clusters~overlapping or not! k`'kD and
hencek(t) is almost the same as the Smoluchowski r
constantkD . So in this case, the trapping kinetics is close
that for noncorrelated traps,P(t)'Pnc(t), and trap cluster-
ing does not actually manifest itself in the kinetics. T
slowdown predicted by inequality in Eq.~3! is a very weak
effect.

For absorbing clusters,k` is less thankD by a factor 3/a.
However, if such clusters are well overlapping, the major
of particles annihilate at times which are small compared
the characteristic time of variation ofk(t). Their trapping
proceeds in accordance with the Smoluchowski depende
for noncorrelated trapsPnc(t), Eq. ~1!. Significant deviations
from the Smoluchowski kinetics occur at long times on
where an application of the mean-field approximation
doubtful. Thus, in this case, as in the case of transpa
clusters,P(t)'Pnc(t).

A different picture takes place when we deal with no
overlapping absorbing clusters. Herek(t) varies very fast,
and the transient period fork(t) is of minor importance in
the kinetics. Therefore, the rate coefficient in fact is equa
k`'3kD /a54pDR/n and the decay of the survival prob
ability is given by

P~ t !'exp~24pcclDRt!, ~6!

i.e., the trapping kinetics is described by the Smoluchow
dependence, Eq.~1!, where the trap concentration and si
are replaced by those for clusters. This is a consequenc
the fact that the clusters by themselves play a role of per
traps. Only in this case the slowdown due to trap cluster
@see Eq.~3!# is significantly manifested from the very begin
ning of the process.
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B. Survival in trap-free voids

At the final stage of the process, the mean-field appro
breaks. Here the problem can be treated by recognizing
at long times most if not all of surviving particles is localize
in trap-free voids. To find an estimate characterizing
fluctuation-induced behavior ofP(t) @more precisely a rea
sonable lower bound forP(t)# we shall use a method simila
to the optimal-fluctuation method@21#, which underlies the
derivation of the asymptotic behavior ofPnc(t), Eq. ~2!, in
Ref. @10#.

Let us introduce a sphereVR of radiusR@b, surrounding
the starting point of a particle. Then one can write down
evident inequality

P~ t !>PR~ t !g~VR!. ~7!

Here

PR~ t !5exp~2p2Dt/R2! ~8!

is the probability of a particle to stay insideVR during the
time t@R2/D under the condition that the sphere conta
no traps;g(VR) is the probability to find the volumeVR free
from traps. For noncorrelated traps the emptiness probab
g(VR) is given by the Poisson law

gnc~VR!5expS 2
4

3
pcR3D . ~9!

Then, by substituting Eqs.~8! and ~9! into the right side of
Eq. ~7! and maximizing the resulting product with respect
the unspecified radiusR, one arrives at Eq.~2! describing
the final stage of trapping by noncorrelated traps@10#.

In the considered case of clustered traps, trap-free v
occur both outside and inside the clusters. It is convenien
present the emptiness probabilityg(VR) as a sum

g~VR!5gout~VR!1gin~VR!, ~10!

where gout ~in!(VR) is the probability to find the voidVR
outside ~inside! the clusters. Taking into account that th
sphereVR is free from traps if its center and that of th
nearest cluster are separated by a distance (R1R) or greater,
one can estimategout(VR) by

gout~VR!5expF2
4

3
pccl~R1R!3G . ~11!

This equation shows two important features of the mod
The distribution of large (R@R) voids is described by Eq
~9! in which c is replaced byccl . This means that on larg
scales the ensemble of clustered traps can be viewed
Poisson ensemble of noncorrelated traps, whose conce
tion is ccl . A completely different distribution occurs fo
small (R!R) voids:

gout~VR!5exp@2F~113R/R!#. ~12!

Evidently, for nonoverlapping clusters the probability to fin
a void VR inside the clusters is small,gin(VR)!gout(VR),
and can be neglected. For overlapping clusters, the intrac
ter concentrationcin has to be replaced by the total trap co
centrationc5cinF and the estimate forgin(VR) is given by
h
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to
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Eq. ~9! ~for R,R!. Noteworthy is that for clustered traps th
emptiness probability of any given region is greater than
the case of noncorrelated traps@17,22#, i.e., due to trap clus-
tering trap-free regions are more pronounced. The inequa
in Eq. ~3! is a consequence of this fact.

Then, proceeding in the same manner as in the nonco
lated case, we substitute Eqs.~8! and~10! into the right side
of Eq. ~7! and maximize the resulting product with respect
the radiusR. As a result, we obtain the estimates for t
radius of optimal void,R(t), and the survival probability of
the particles localized in trap-free regions. As one might
pect, these estimates have different forms according to wh
kind of voids~inside or outside clusters, small or large! plays
the dominant role. At very long, timest→`, the main con-
tribution is given by large voids,R(t)@R. Here one obtains
that

P~ t !;expF22.5FS t

t D 3/5G
5exp@2A~ccl

2/3Dt !3/5#, R~ t !5RS t

t D 1/5

, ~13!

where t5(3/2p2)FtD}R5 is a characteristic time charac
terizing the particle survival in trap-free voids outside t
clusters. Equation~13! provides a reasonable lower boun
for P(t) at timest@t. Moreover, it presents the asymptot
(t→`) behavior of the exact solution, as it was proved
Ref. @22#. This regime stems from large scale properties
the model~clusters act as noncorrelated absorbing traps
gardless of details of their structure!. This is why the survival
probability, Eq.~13!, is similar to that known for noncorre
lated traps, Eq.~2!. The only difference is that the kinetics i
controlled by the cluster concentrationccl rather than the trap
concentrationc. In agreement with Eq.~3!, this decay is
substantially slower thanPnc(t) given by Eq.~2!.

At times t!t, the main contribution toP(t) is given by
the particles surviving in small~compared to the correlation
lengthR! voids,R(t)!R, which occur both outside and in
side the clusters. In the former case, the particle surviva
described by

P~ t !;expF2FX114.5S t

t D 1/3CG , R~ t !5RS t

t D 1/3

,

~14!

i.e., the decay proceeds much slower than at long timet
@t @see Eqs.~13! and~14!#. In the latter case~and for over-
lapping clusters only!, the estimate forP(t) is given by Eq.
~2! at times, whereR(t)5(pDt/2c)1/5,R. Note that for
overlapping clusters the particle survival in the intraclus
trap-free regions plays the dominant role whent!t/n2/3.

Thus, the decay of the particle survival probability in tra
free voids involves two or~for overlapping clusters! three
stages. At timest@t, the decay is governed by the tim
dependence in Eq.~13!. At shorter timest!t ~for overlap-
ping clusterst/n2/3!t!t!, the decay proceeds in acco
dance with Eq.~14!. At times t!t/n2/3 ~for overlapping
clusters only!, there exists a regime, where the effects due
trap clustering are of minor importance and the decay form
the same as that for noncorrelated traps, Eq.~2!.
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IV. DISCUSSION

We are now in a position to discuss different manifes
tions of trap clustering in the kinetics over the entire tim
domain. To understand better what is introduced by t
clustering in the trapping kinetics, it is reasonable to start
recalling the kinetic scenario for noncorrelated traps. T
scenario is based on the two lower bounds for the surv
probability given by Eqs.~1! and ~2!. At times t.tnc*
5A1f21/2(4pbcD)21, where (4pbcD)21 is the Smolu-
chowski life time@see Eq.~1!# andA1555/2p3/54, the lower
bound, Eq. ~2!, resulting from the optimal-fluctuation
method, offers a better estimate forPnc(t) than the Smolu-
chowski result, Eq.~1!. Thustnc* can be considered as a co
ditional border between the mean-field and the fluctuat
regimes: at timest,tnc* the kinetics is single-exponentia
while at timest.tnc* it exhibits a stretched-exponential b
havior. The fraction of particles«nc5Pnc(tnc* ) annihilating
according to the stretched exponential law, Eq.~2!, is a neg-
ligibly small quantity

«nc5exp~2A1f21/2! ~15!

and trapping of the overwhelming majority of particles
well described by the Smoluchowski dependence, Eq.~1!.

When considering the model of clustered traps, we a
have at hand the mean-field and the fluctuation estimate
the survival probability~see Sec. III!. The corresponding ki-
netic scenario is arrived at by comparison these low
bounds forP(t). A new factor is that the estimates obtain
in Sec. III are determined by the two additional dimensio
less parametersR/b andn appearing in the problem. There
fore, such a comparison should be carried out everywh
over the plane (R/b,n). As a result we arrive at the mor
rich picture than that known for noncorrelated traps. No
worthy also is at times when the fluctuation slowdown do
occur, the neglect of the survival of particles which have l
a void is justified, sinceR(t) is large compared with the
characteristic length over which a particle is trapped outs
a void.

Schematic representation of domains in the pla
(R/b,n), corresponding to different kinetic scenarios,
shown in Fig. 1. Let us consider the trapping kinetics

FIG. 1. Schematic representation of the domains in the plan
the problem parameters (R/b,n), corresponding to different kinetic
scenarios. Domain 1 represents nonoverlapping and weakly o
lapping transparent clusters. Domain 2 represents nonoverlap
absorbing clusters. Domains 3 and 4 represent moderately
strongly overlapping clusters, respectively.
-

p
y
s
al

n

o
of

r

-

re

-
s
t

e

e

r

these domains in order. For transparent (a,1) nonoverlap-
ping (F,1) and weakly overlapping (aF,1) clusters~do-

main 1 in Fig. 1!, R/b,(3f)21/2, 1,n,( 1
3 )R/b, and ab-

sorbing nonoverlapping (a.1, F,1! clusters~domain 2!,

n.max@( 1
3)R/b,f(R/b)3#, a general behavior ofP(t) is remi-

niscent of that for noncorrelated traps. At timest,t* , the
survival probability decays exponentially

P~ t !5exp~2ck`t !, ~16!

while after t* its time behavior is governed by th
asymptotic dependence in Eq.~13!, associated with the par
ticle survival in large, compared to the correlation lengthR,
trap-free voids. The crossover timet* 5n21(k` /kD)25/2tnc*
is found via equating the survival probabilities given by Eq
~13! and~16!. In the case of transparent clusters~domain 1!,
k`'kD and Eq.~16! is reduced to Eq.~1!. Therefore, the
slowdown due to trap clustering@see Eq.~3!# is manifested
only at the final stage of the process@see Eqs.~2! and ~13!#
due to the existence of the large trap-free regions. The f
tion of particles annihilating in the fluctuation regime
given by

«5P~ t* !5exp~2A1n21f21/2!5~«nc!
1/n. ~17!

Note that«.«nc and the difference («2«nc) increases with
n. However, becausen is bound byf21/2 in this domain, the
quantity« remains negligibly small.

A distinctive feature of the kinetics of trapping by non
overlapping absorbing clusters~domain 2! is that the trap
clustering manifests itself from the very beginning of t
process. Indeed, in this domaink`'3kD /a!kD . Therefore
Eq. ~16! is reduced to Eq.~6!. This implies that the clusters
by themselves play a role of perfect traps and the problem
reduced to that of noncorrelated traps whose concentra
and size are those of the clusters. Thus in domain 2,
fraction of particles«5P(t* ) reacting in the fluctuation-
induced regime, Eq.~13!, is given by Eq.~15! in which one
has to replace the volume fraction of trapsf by the volume
fraction of clustersF

«5exp~2A1F21/2!5~«nc!
Anb3/R3

. ~18!

In the trivial case of trap-filled clusters,nb3/R3.1, the
quantity« is smaller than«nc. If, however,nb3/R3,1 and
hencef,F, then«.«nc. The more the cluster volume fre
of traps, the more this difference. The estimate Eq.~18! is
obtained under the conditionF,1, so in domain 2 the quan
tity « is bound by its value near the borderF51, where«
5exp(2A1). Attention is drawn to the fact that for absorbin
clusters« declines withn, which is quite in contrast to wha
one has for transparent clusters. Thus the dependence«(n)
exhibits a nonmonotonic behavior. The maximum is loca
near the region of transition from transparent to absorb
clusters, wheren;R/b.

Domain 3 corresponds to moderately overlappin
max(1,1/a),F,f21/2, clusters, R/b.(3f)21/2,
max@(27f)21/2,f(R/b)3#.n.f3/2(R/b)3. In this case the
kinetic scenario involves three stages. The first one is w
described by the Smoluchowski solution, Eq.~1!, which is
justified here up to timet15tD /a. At the time intervalt1

of
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,t,t, the decay is governed by the time dependence gi
by Eq. ~14!. This intermediate asymptotic behavior is ass
ciated with roaming of particles within small~compared to
the cluster sizeR! trap-free cavities between the clusters.
last, at timest.t the survival probability takes its universa
asymptotic form, Eq.~13!. Thus in domain 3 the whole dis
tribution of voids outside the clusters, and not just that
large voids, is of importance in explaining the fluctuatio
induced kinetics. Note that in this case the total fraction
particles reacting in the two fluctuation regimes~mainly in
the first one! is

«5e2F. ~19!

This fraction falls off as the volume fraction of clusters i
creases.

Domain 4 represents strongly overlapping,F.f21/2,
clusters,R/b.(3f)21/2, n,f3/2(R/b)3. One can expec
that strong overlapping of clusters effectively cancels
trap correlations. Our estimates of the trapping kinetics
domain 4 support these expectations. Here the kinetic
nario involves four stages. At the first two stages, the de
basically does not differ from the kinetics inherent in t
case of noncorrelated traps: whent,tnc* , it follows mean-
field predictions, Eq.~1!, while whent/n2/3.t.tnc* the sur-
vival probability decays according to the stretche
exponential law, Eq.~2!, associated here with the partic
survival in intracluster trap-free voids. Thus, the correlatio
effects do not disturb the trapping kinetics over a long per
of time even when survival strategy in trap-free regions
comes advantageous. This is quite in contrast to what
have seen in all cases discussed above. Only at very
times t.t/n2/3, the trap correlations manifest themselve
first P(t) decays in accordance with Eq.~14! and finally,
when t.t, the universal asymptotic behavior, Eq.~13!,
takes place. WhenF→` the four stage kinetic scenario
reduced to the two stage kinetic scenario for noncorrela
traps. Evidently, in this domain«5«nc ~the contribution of
the third and the fourth stages is negligibly small!.

Our last remark concerns the effect of trap clustering
the fraction of particles« annihilating via the fluctuation-
induced decay forms. As is seen from the estimates ab
the quantity« can be significantly increased when we de
with clustered traps. The estimate for« ~in domain 3! given
by Eq. ~19! appears to be promising. It predicts values o«
much greater than«nc, Eq. ~15!, if the volume fraction of
clustersF is not too large. As is seen from Eq.~19!, the
function «(F) monotonically decreases withF when F
.1. On the other hand, the estimate for« obtained in domain
2, Eq. ~18!, shows a monotonic increase withF, when F
,1. This suggests that the dependence«(F) exhibits a non-
monotonic behavior with a maximum located near the bor
line F51 between overlapping and nonoverlapping abso
ing clusters~domains 2 and 3!. One can expect that tra
clusters, parameters of which are in this optimal region,
best suited to exhibit the fluctuation effects in the trapp
kinetics. Nevertheless, even under such optimal condition
n
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is unlikely that the bulk of particles is trapped following th
fluctuation decay laws. The point is that the fluctuation slo
down is originated from the particle untypical survival
untypically large trap-free regions@see Eq.~7!#. In the case
of clustered traps, the probability to find trap-free voids@the
emptiness probabilityg(VR)# can be much greater tha
when traps are noncorrelated, however, the probab
PR(t), Eq. ~8!, of a Brownian particle staying insideVR
during the timet@R2(t)/D remains small.

V. CONCLUSIONS

This paper treats the trapping kinetics in the case w
traps are gathered in spherical clusters which are unifor
distributed in space. By consideration of the whole range
the cluster parameters, we have discussed both the m
field and the fluctuation-induced regimes determining the
tial and the final stage of the process, respectively. Thus,
extend the theory of diffusion-limited reactions to the case
clustered traps over the entire time interval.

The following important observations related to the ma
festation of trap clustering in the trapping kinetics may
deduced from our analysis:~i! The effect of trap correlations
is strong from the very beginning of the process only
nonoverlapping absorbing clusters~domain 2 in Fig. 1!. In
all other cases, the slowdown due to trap cluster format
@see Eq.~3!# becomes significant only at asymptotically lon
times.~ii ! Due to trap clustering, the fluctuation-induced k
netics exhibits more rich behavior as compared to the cas
noncorrelated traps. In particular, there exists the interm
ate asymptotic dependence, Eq.~14!, which decays consid-
erably slower than the long-time decay law, Eq.~13!, pre-
dicts. ~iii ! Due to trap clustering, the fraction of particle
reacting according to nonexponential kinetics can be sign
cantly increased. Moreover, there exists a region of clu
parameters, where the effect takes its maximal value. T
region, presumably near the border between overlapping
nonoverlapping absorbing clusters~the curveF51 in the
Fig. 1!, is best suited to exhibit the fluctuation effects in t
trapping kinetics.~iv! Strong overlapping of clusters effec
tively cancels the trap correlation effects in the kinetics.

As a final remark, we conjecture that qualitatively simil
results should be obtained when considering more gen
models of clustered traps~such as, for example, clusters o
nonspherical shape!, where analytical treatments seems to
much more difficult. Therefore, though the model discuss
here is highly simplified, it can be taken as a useful guide
the analysis of the trap clustering influence on the trapp
kinetics in more realistic cases.
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